Source code for snntoolbox.simulation.backends.inisim.ttfs_corrective

# -*- coding: utf-8 -*-
"""INI time-to-first-spike simulator backend with corrective spikes.

This module defines the layer objects used to create a spiking neural network
for our built-in INI simulator
:py:mod:`~snntoolbox.simulation.target_simulators.INI_ttfs_corrective_target_sim`.

The coding scheme underlying this conversion is that the instantaneous firing
rate is given by the inverse time-to-first-spike. In contrast to
:py:mod:`~snntoolbox.simulation.target_simulators.INI_ttfs_target_sim`, this
one allows corrective spikes to be fired to improve the first guess made by
``ttfs``.

This simulator works only with Keras backend set to Tensorflow.

@author: rbodo
"""

import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as k
from tensorflow.keras.layers import Dense, Flatten, AveragePooling2D, \
    MaxPooling2D, Conv2D, Layer, Concatenate


[docs]class SpikeLayer(Layer): """Base class for layer with spiking neurons.""" def __init__(self, **kwargs): self.config = kwargs.pop(str('config'), None) self.layer_type = self.class_name self.batch_size = self.config.getint('simulation', 'batch_size') self.dt = self.config.getfloat('simulation', 'dt') self.duration = self.config.getint('simulation', 'duration') self.tau_refrac = self.config.getfloat('cell', 'tau_refrac') self._v_thresh = self.config.getfloat('cell', 'v_thresh') self.time = None self.mem = self.spiketrain = self.impulse = None self.last_spiketimes = None allowed_kwargs = {'input_shape', 'batch_input_shape', 'batch_size', 'dtype', 'name', 'trainable', 'weights', 'input_dtype', # legacy } for kwarg in kwargs.copy(): if kwarg not in allowed_kwargs: kwargs.pop(kwarg) Layer.__init__(self, **kwargs) self.stateful = True
[docs] def reset(self, sample_idx): """Reset layer variables.""" self.reset_spikevars(sample_idx)
@property def class_name(self): """Get class name.""" return self.__class__.__name__
[docs] def update_neurons(self): """Update neurons according to activation function.""" # Update membrane potentials. new_mem = self.get_new_mem() # Generate spikes. output_spikes = self.get_spikes(new_mem) if self.spiketrain is not None: self.add_update([(self.spiketrain, self.time * k.sign(output_spikes))]) # Compute post-synaptic potential. psp = self.get_psp(output_spikes) return psp
[docs] def get_spikes(self, new_mem): """Linear activation.""" thr = self._v_thresh pos_spikes = k.cast(tf.logical_and( k.less(self.mem, thr), k.greater_equal(new_mem, thr)), k.floatx()) neg_spikes = k.cast(tf.logical_and( k.less(new_mem, thr), k.greater_equal(self.mem, thr)), k.floatx()) return pos_spikes - neg_spikes
[docs] def get_new_mem(self): """Add input to membrane potential.""" new_mem = self.mem + self.impulse if self.config.getboolean('cell', 'leak'): # Todo: Implement more flexible version of leak! new_mem = tf.where(k.greater(new_mem, 0), new_mem - 0.1 * self.dt, new_mem) self.add_update([(self.mem, new_mem)]) return new_mem
[docs] def get_psp(self, output_spikes): new_spiketimes = tf.where(k.greater(output_spikes, 0), k.ones_like(output_spikes) * self.time, self.last_spiketimes) new_spiketimes = tf.where(k.less(output_spikes, 0), k.zeros_like(output_spikes) * self.time, new_spiketimes) assign_new_spiketimes = tf.assign(self.last_spiketimes, new_spiketimes) with tf.control_dependencies([assign_new_spiketimes]): last_spiketimes = self.last_spiketimes + 0 # Dummy op # psp = k.maximum(0., tf.divide(self.dt, last_spiketimes)) psp = tf.where(k.greater(last_spiketimes, 0), k.ones_like(output_spikes) * self.dt, k.zeros_like(output_spikes)) return psp
[docs] def get_time(self): """Get simulation time variable. Returns ------- time: float Current simulation time. """ return k.get_value(self.time)
[docs] def set_time(self, time): """Set simulation time variable. Parameters ---------- time: float Current simulation time. """ k.set_value(self.time, time)
[docs] def init_membrane_potential(self, output_shape=None, mode='zero'): """Initialize membrane potential. Helpful to avoid transient response in the beginning of the simulation. Not needed when reset between frames is turned off, e.g. with a video data set. Parameters ---------- output_shape: Optional[tuple] Output shape mode: str Initialization mode. - ``'uniform'``: Random numbers from uniform distribution in ``[-thr, thr]``. - ``'bias'``: Negative bias. - ``'zero'``: Zero (default). Returns ------- init_mem: ndarray A tensor of ``self.output_shape`` (same as layer). """ if output_shape is None: output_shape = self.output_shape if mode == 'uniform': init_mem = k.random_uniform(output_shape, -self._v_thresh, self._v_thresh) elif mode == 'bias': init_mem = np.zeros(output_shape, k.floatx()) if hasattr(self, 'b'): b = self.get_weights()[1] for i in range(len(b)): init_mem[:, i, Ellipsis] = -b[i] else: # mode == 'zero': init_mem = np.zeros(output_shape, k.floatx()) return init_mem
[docs] def reset_spikevars(self, sample_idx): """ Reset variables present in spiking layers. Can be turned off for instance when a video sequence is tested. """ mod = self.config.getint('simulation', 'reset_between_nth_sample') mod = mod if mod else sample_idx + 1 do_reset = sample_idx % mod == 0 if do_reset: k.set_value(self.mem, self.init_membrane_potential()) k.set_value(self.time, np.float32(self.dt)) zeros_output_shape = np.zeros(self.output_shape, k.floatx()) if self.spiketrain is not None: k.set_value(self.spiketrain, zeros_output_shape) k.set_value(self.last_spiketimes, zeros_output_shape - 1)
[docs] def init_neurons(self, input_shape): """Init layer neurons.""" from snntoolbox.bin.utils import get_log_keys, get_plot_keys output_shape = self.compute_output_shape(input_shape) self.mem = k.variable(self.init_membrane_potential(output_shape)) self.time = k.variable(self.dt) if any({'spiketrains', 'spikerates', 'correlation', 'spikecounts', 'hist_spikerates_activations', 'operations', 'synaptic_operations_b_t', 'neuron_operations_b_t', 'spiketrains_n_b_l_t'} & (get_plot_keys(self.config) | get_log_keys(self.config))): self.spiketrain = k.zeros(output_shape) self.last_spiketimes = k.variable(-np.ones(output_shape))
[docs] def get_layer_idx(self): """Get index of layer.""" label = self.name.split('_')[0] layer_idx = None for i in range(len(label)): if label[:i].isdigit(): layer_idx = int(label[:i]) return layer_idx
[docs]def spike_call(call): def decorator(self, x): # Only call layer if there are input spikes. This is to prevent # accumulation of bias. self.impulse = tf.cond(k.any(k.not_equal(x, 0)), lambda: call(self, x), lambda: k.zeros_like(self.mem)) return self.update_neurons() return decorator
[docs]class SpikeConcatenate(Concatenate): """Spike merge layer""" def __init__(self, axis, **kwargs): kwargs.pop(str('config')) Concatenate.__init__(self, axis, **kwargs)
[docs] @staticmethod def get_time(): pass
[docs] @staticmethod def reset(sample_idx): """Reset layer variables.""" pass
@property def class_name(self): """Get class name.""" return self.__class__.__name__
[docs]class SpikeFlatten(Flatten): """Spike flatten layer.""" def __init__(self, **kwargs): self.config = kwargs.pop(str('config'), None) Flatten.__init__(self, **kwargs)
[docs] @staticmethod def get_time(): return None
[docs] def reset(self, sample_idx): """Reset layer variables.""" pass
@property def class_name(self): """Get class name.""" return self.__class__.__name__
[docs]class SpikeDense(Dense, SpikeLayer): """Spike Dense layer."""
[docs] def build(self, input_shape): """Creates the layer neurons and connections. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ Dense.build(self, input_shape) self.init_neurons(input_shape)
[docs] @spike_call def call(self, x, **kwargs): return Dense.call(self, x)
[docs]class SpikeConv2D(Conv2D, SpikeLayer): """Spike 2D Convolution."""
[docs] def build(self, input_shape): """Creates the layer weights. Must be implemented on all layers that have weights. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ Conv2D.build(self, input_shape) self.init_neurons(input_shape)
[docs] @spike_call def call(self, x, mask=None): return Conv2D.call(self, x)
[docs]class SpikeAveragePooling2D(AveragePooling2D, SpikeLayer): """Average Pooling."""
[docs] def build(self, input_shape): """Creates the layer weights. Must be implemented on all layers that have weights. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ AveragePooling2D.build(self, input_shape) self.init_neurons(input_shape)
[docs] @spike_call def call(self, x, mask=None): return AveragePooling2D.call(self, x)
[docs]class SpikeMaxPooling2D(MaxPooling2D, SpikeLayer): """Spiking Max Pooling."""
[docs] def build(self, input_shape): """Creates the layer neurons and connections.. Parameters ---------- input_shape: Union[list, tuple, Any] Keras tensor (future input to layer) or list/tuple of Keras tensors to reference for weight shape computations. """ MaxPooling2D.build(self, input_shape) self.init_neurons(input_shape)
[docs] @spike_call def call(self, x, mask=None): """Layer functionality.""" return MaxPooling2D.call(self, x)
custom_layers = {'SpikeFlatten': SpikeFlatten, 'SpikeDense': SpikeDense, 'SpikeConv2D': SpikeConv2D, 'SpikeAveragePooling2D': SpikeAveragePooling2D, 'SpikeMaxPooling2D': SpikeMaxPooling2D, 'SpikeConcatenate': SpikeConcatenate}